ON THE CONSTRUCTION OF HADAMARD STATES FOR THE LINEARIZED EINSTEIN EQUATIONS

Simone Murro

Department of Mathematics University of Genoa

Working Seminar Mathematical Physics

May, 2024

[INSAM]

THE LINEARIZED EINSTEIN EQUATIONS

Let (M, g) be a globally hyperbolic manifold satistying

$$\operatorname{Ric}_{g} - \frac{1}{2}\operatorname{Scal}_{g}g + \Lambda g = 0 \tag{1}$$

The linearized Einstein's equations can be described by

$$\mathsf{P}\colon \Gamma(\mathsf{V}_2)\to \Gamma(\mathsf{V}_2),\qquad \mathsf{P}:=\mathsf{D}_2-\mathsf{K}\mathsf{K}^\star\,,$$

where

$$-$$
 D₂ := $-\Box_2 + 2\operatorname{Riem}_g$ is a normally hyperbolic operator

- K $:= I \circ \mathrm{d}$ is the linear counterpart of the diffeomorphism invariance of (1)

$$\rightarrow I := \mathbb{1} - \frac{1}{2} \operatorname{tr}_{g}(\cdot)g \text{ denotes the trace-reversal;}$$
$$\rightarrow (d\omega)_{\alpha\beta} = \frac{1}{2} (\nabla_{\alpha}\omega_{\beta} + \nabla_{\beta}\omega_{\alpha}) \text{ is the symmetrised gradient;}$$

- K^{*} = δ that is the **divergence** of $u \in \Gamma(V_2)$, i.e. $(\delta u)_{\mu} = -2\nabla^{\lambda}u_{\lambda\mu}$.

THE FIRST DIFFULTIES

1. *P* is <u>not</u> hyperbolic since it holds PK = 0

 \Rightarrow linearized gravity should be treat as gauge theory

$$\frac{\mathsf{ker}_{\mathsf{sc}}\mathsf{P}}{\mathsf{ran}K}\simeq \frac{\mathsf{ker}\,\mathsf{D}_2\cap\mathsf{ker}\,\mathsf{K}^\star}{\mathsf{K}(\mathsf{ker}\mathsf{D}_1)}\simeq \frac{\mathsf{ker}\,\mathsf{K}_\Sigma^\dagger}{\mathsf{ran}\,\mathsf{K}_\Sigma}$$

where

- \to $\mathsf{K}^\dagger_\Sigma:=
 ho_0 \mathcal{K}^* \mathit{U}_1$ is the gauge condition at the level of initial data ;
- \rightarrow K_{Σ} := $\rho_1 K U_0$ is the gauge symmetry at the level of the initial data.
- 2. $D_2 u = 0$ and $K^* u = 0$ is an <u>overdetermined</u> system
 - \Rightarrow we find solutions if (M, g) solves the Einstein's equations since

$$D_2K = KD_1$$
 for $D_1 = -\Box_1 - \Lambda$

3. P2 is self-adjoint w.r.t. the indefinite inner product

$$(\cdot, \cdot)_{\mathsf{V}_{2},\mathsf{I}} := 2 \int_{\mathsf{M}} \otimes_{s}^{2} g^{-1}(\overline{\cdot}, \mathsf{I} \cdot) \operatorname{vol}$$

Step 1: From the classical phase space

$$\frac{\mathsf{ker}_{sc}\mathsf{P}}{\mathsf{ran}_{sc}\mathsf{K}} \xrightarrow[\simeq]{} \frac{\mathsf{G}_1}{\mathsf{ran}_c\mathsf{P}} \stackrel{\mathsf{G}_2}{=:} \mathcal{V}_{\mathrm{P}} \quad \mathrm{q}_{2,\mathrm{I}}(\cdot|\cdot) := \mathrm{i}(\cdot|\mathsf{G}_2\cdot)_{\mathsf{V}_2,\mathrm{I}}$$

we construct an abstract *-algebra CCR

generators:
$$\Phi(v) \quad \Phi^*(v) \quad \mathbb{1}$$

CCR relations: $[\Phi(v), \Phi(w)] = [\Phi^*(v), \Phi^*(w)] = 0$
 $[\Phi(v), \Phi^*(w)] = q_{2,I}(v, w)\mathbb{1}$

Step 2: Construct an **Hadamard states** $\omega : CCR \to \mathbb{C}$ defined by

 $\begin{array}{ll} \text{covariances:} & \Lambda^+(v,w) := \omega(\Phi(v)\Phi^*(w)) & \Lambda^-(v,w) := \omega(\Phi^*(w)\Phi(v)) \\ \text{Hadamard conditions:} & \mathrm{WF}'(\Lambda^\pm) \subset \mathcal{N}^\pm \times \mathcal{N}^\pm \end{array}$

$$\mathcal{N}^{\pm} := \{(\boldsymbol{\textit{p}}, \xi) \in \mathsf{T}^*\mathsf{M} \mid \boldsymbol{\textit{g}}^{-1}(\xi, \xi) = 0 \text{ and } \pm \xi(\boldsymbol{\textit{v}}) > 0 \; \forall \boldsymbol{\textit{v}} \in \mathsf{T}_{\boldsymbol{\textit{p}}}\mathsf{M} \text{ fut.dir.} \}$$

CHARACTERIZATION OF HADAMARD STATES

We work with initial data

$$(\mathcal{V}_{\mathrm{P}}, \mathrm{q}_{2,\mathrm{I}}) \xrightarrow{[\rho \mathsf{G}_{2}]} \left(\mathcal{V}_{\Sigma} := \frac{\mathsf{ker}\mathsf{K}_{\Sigma}^{\dagger}}{\mathsf{ran}\mathsf{K}_{\Sigma}}, \mathrm{q}_{2,\mathrm{I},\Sigma}(\cdot|\cdot) = \mathrm{i}(\cdot|\mathsf{G}_{2,\Sigma}\cdot)_{\mathsf{V}_{\rho_{2}|\mathrm{I}}} \right)$$

PROPOSITION [Gérard-M.-Wrochna]: let $c_2^{\pm} : \Gamma(V_{\rho_2}) \rightarrow \Gamma(V_{\rho_2})$ be

(i)
$$c_2^+ + c_2^- = 1$$
;
(ii) $(c_2^{\pm})^{\dagger} = c_2^{\pm}$ (w.r.t. $q_{2,I,\Sigma}$);
(iii) $q_{2,\Sigma}(\mathfrak{f}|c_2^{\pm}\mathfrak{f}) \ge 0$ $\forall \mathfrak{f} \in \ker(\mathsf{K}_{\Sigma}^{\pm})$.
(iv) $c_2^{\pm}\mathsf{K}_{\Sigma} = \mathsf{K}_{\Sigma}c_1^{\pm}$ for some c_1^{\pm}
(v) $\operatorname{WF}'(U_1c^{\pm}) \subset (\mathcal{N}^{\pm} \cup F) \times \mathsf{T}^*\Sigma$ for some $F \subset \mathsf{T}^*\mathsf{M}$ s.t. $F \cap \mathcal{N} = \emptyset$
Then $\Lambda^{\pm}([s], [t]) := (s, \lambda^{\pm}t)_{V_1}$ where $\lambda^{\pm} := \pm \mathrm{i}(\rho_2\mathsf{G}_2)^*\mathsf{G}_{2,\Sigma}c_2^{\pm}(\rho_2\mathsf{G}_2)$
are pseudo-covariances for a quasifree Hadamard state $\omega : \operatorname{CCR} \to \mathbb{C}$.

HOW CAN WE CONSTRUCT THESE OPERATORS?

Simone Murro (University of Genoa)

The quantization of Maxwell theory

A TOY MODEL FROM ELLIPTIC THEORY: CALDERÓN PROJECTORS

Consider a Riemannian manifold (Σ, h) and define

 $\Omega = \mathbb{R} imes \Sigma \,, \qquad \Omega^{\pm} = \Omega \cap \mathbb{R}^{\pm} \,, \qquad ext{with metric } g = ds^2 + h \,.$

Let $\overline{\mathcal{D}'}(\Omega^{\pm})$ be the space of distribution in $\mathcal{D}'(\Omega)$ restricted to Ω^{\pm} and set

$$N^{\pm} := \left\{ u \in \overline{\mathcal{D}'}(\Omega^{\pm}) \, | \, \tilde{P}u := \left(-\partial_s^2 \underbrace{-\Delta_h + m^2}_{\varepsilon^2} \right) u = 0 \right\}.$$

For any $u \in N^{\pm}$, the traces $\varrho^{\pm}u = \begin{pmatrix} u |_{\partial\Omega^{\pm}} \\ -\partial_s u |_{\partial\Omega^{\pm}} \end{pmatrix}$ are well-defined and

Calderón projectors c^{\pm} are defined to be projectors onto

$$Z^{\pm} := \varrho^{\pm} N^{\pm} := \{ f \in \mathcal{D}'(\Sigma; \mathbb{C}^2) : f = \varrho^{\pm} u, \text{for } u \in N^{\pm} \}$$

Using that $u = e^{\mp \varepsilon s} v$ for $v \in \mathcal{D}'(\Sigma)$ and Z^{\pm} are linearly independet, we have

$$\underline{\varrho}^{\pm} u = \begin{pmatrix} u|_{\partial\Omega^{\pm}} \\ -\partial_{s} u|_{\partial\Omega^{\pm}} \end{pmatrix} = \begin{pmatrix} v \\ \pm \varepsilon v \end{pmatrix} \quad \text{and} \quad c^{\pm} = \frac{1}{2} \begin{pmatrix} 1 & \pm \epsilon^{-1} \\ \pm \epsilon & 1 \end{pmatrix}$$

The Caldéron projectors are associated to the ground states!

Additional difficulties: $m = 0 \implies \text{infrared divergences}!$

(I) Wick rotation in analytic spacetimes

(II) Construction of Calderón projectors

(III) Boundary conditions for linearized gravity

Based on

"Wick rotation of linearized gravity in Gaussian time and Calderón projectors" (with C. Gérard and M. Wrochna)

> "On Boundary Conditions for Linearised Einstein's Equations" (with M. Capofferi and G. Schmid)

GEOMETRIC SETTING

As always (M, g) is a globally hyperbolic spacetime

• To deal with the overdetermined Cauchy problem, we require

(1) g solves the Einstein's equations

• To have a good pseudodifferential calculus, we assume:

(2) (M,g) to be of *bounded geometry* near a Cauchy surface Σ

 \bullet To implement the Wick rotation, we use Gaussian normal coordinate near Σ

$$[-\delta,\delta] imes \Sigma$$
 $g = -dt^2 + h_t$

and suppose: (3) the map $t \mapsto h_t$ is real analytic for $0 < \delta \ll 1$

THEOREM [C.Gérard, S.M., M.Wrochna]

Let (Σ, h) be a Riemannian manifold of analytic bounded geometry s.t. the Cauchy data for the Einstein's equations satisfying the usual constraints.

 \implies there exists a metric g such that (M, g) satisfies (1)-(3)

REDUCED SETTING AND WICK ROTATION

Now we fix Gaussian normal coordinates

$$M_{\delta} := I_{\delta} imes \Sigma \qquad g = -dt^2 + h_t$$

and use the decompositions

$$\omega = \omega_t dt + \omega_{\Sigma} \qquad u = u_{tt} dt \otimes_s dt + u_{t\Sigma} \otimes_s dt + u_{\Sigma\Sigma}$$

We identify tensors on different Σ_t on the same Σ_0 by parallel transport along ∂_t and the differential operators D_j rewrite as

$$\mathsf{D}_j = \partial_t^2 + a_j$$
 with principal symbol $\sigma_{\mathrm{pr}}(a_j)(k) = h_t^{-1}(k,k)\mathbb{1}$

WICK ROTATION:

Since $t\mapsto h_t$ is real analytic, all the operators extend holomorphically in $\mathbb{C} imes\Sigma$

$$\begin{split} \mathsf{D}_{j} &= \partial_{t}^{2} + a_{j} \quad (ext{hyperbolic}) \quad \stackrel{t=is}{\longrightarrow} \quad \tilde{\mathsf{D}}_{j} &= -\partial_{s}^{2} + a_{j}(is) \quad (ext{elliptic}) \\ \mathsf{D}_{2}\mathsf{K} &= \mathsf{K}\mathsf{D}_{1} \quad \Rightarrow \quad \tilde{\mathsf{D}}_{2}\tilde{\mathsf{K}} &= \tilde{\mathsf{K}}\tilde{\mathsf{D}}_{1} \end{split}$$

DIRICHLET REALIZATION

To construct Calderón proj. we need a boundary condition on $\Omega := [-T, T] \times \Sigma$ \implies Dirichlet boundary conditions

Let $H^1_0(\Omega; \tilde{V})$ be the closure of $C^{\infty}_c(\Omega, \tilde{V})$ for the norm

$$\|u\|_{H^{1}(\Omega;\tilde{V})}^{2}=\int_{\Omega}\left((\partial_{s}u|\partial_{s}u)_{\tilde{V}}+(u|-\Delta_{\tilde{h}_{0}}u)_{\tilde{V}}+(u|u)_{\tilde{V}}\right)|\tilde{h}_{0}|^{\frac{1}{2}}dtdx.$$

and consider the sesquilinear form

 $Q_{\Omega}(v, u) := (v | \tilde{\mathsf{D}} u)_{\tilde{V}(\Omega)}, \text{ with domain } \mathsf{Dom } Q_{\Omega} = C^{\infty}_{c}(\Omega; \tilde{V}).$

Then we have:

- Q_{Ω} and Q_{Ω}^* are closeable on $L^2(\Omega; \tilde{V})$;
- their closures $\overline{Q_{\Omega}}$, $\overline{Q_{\Omega}^*}$ are sectorial with domain $H_0^1(\Omega; \tilde{V})$;
- \tilde{D}_{Ω} , \tilde{D}_{Ω}^* associated to $\overline{\mathcal{Q}_{\Omega}}$, $\overline{\mathcal{Q}_{\Omega}^*}$ satisfy $0 \in \operatorname{rs}(\tilde{D}_{\Omega})$ $0 \in \operatorname{rs}(\tilde{D}_{\Omega}^*)$
- \tilde{D}^*_{Ω} is the adjoint of \tilde{D}_{Ω} .

DEFINITION: \tilde{D}_{Ω} is called **Dirichlet realization** of \tilde{D}

Simone Murro (University of Genoa)

CALDERÓN PROJECTORS WITH DIRICHLET BOUNDARY CONDITIONS

<code>DEFINITION:</code> The Calderón projectors for the Dirichlet realization \tilde{D}_{Ω} of \tilde{D} are

$$\tilde{\varepsilon}^{\pm} \coloneqq \mp \tilde{\varrho}^{\pm} \tilde{\mathsf{D}}_{\Omega}^{-1} \tilde{\varrho}^{*} \tilde{\sigma}$$

where

•
$$\tilde{\varrho}^{\pm} u = \begin{pmatrix} u(0^{\pm}) \\ -\partial_s u(0^{\pm}) \end{pmatrix}$$
 • $\tilde{\sigma} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
• $\tilde{\varrho}^*$ is the adjoint of $\tilde{\varrho}$ • \tilde{D}_{Ω}^{-1} is the inverse of \tilde{D}_{Ω}

To study the microlocal properties of \tilde{c}^{\pm} we need a parametrix $\tilde{D}_{\Omega}^{(-1)}$ for \tilde{D}_{Ω} s.t.

$$ilde{\mathsf{D}}_{\Omega}^{-1} - ilde{\mathsf{D}}_{\Omega}^{(-1)} \in \mathcal{W}^{-\infty}(\Omega; \, ilde{\mathcal{V}})$$

To this end we need

- 1) microlocal factorization for \tilde{D}
- 2) a parametrix for \tilde{D}

MICROLOCAL FACTORIZATION OF D

• $\tilde{D} = -\partial_s^2 + \tilde{a}$ has the following microlocal factorization $\tilde{D} - \tilde{r}_{-\infty}^{\pm} = (-\partial_s + \tilde{b}^{\pm})(\partial_s + \tilde{b}^{\pm})$

(sketch of the proof)

We add to \tilde{a} a smoothing operator $\tilde{r}_{-\infty} = \tilde{r}^*_{-\infty}$ s.t.

$$\tilde{a} + r_{-\infty}$$
 is *m*-accretive \implies $\tilde{\epsilon} := (\tilde{a} + r_{-\infty})^{\frac{1}{2}}$

The operator $\tilde{\epsilon}$ with domain $H^1(\Sigma; \tilde{V})$ is closed, elliptic, invertible and

$$\sigma_{\mathrm{pr}}(\tilde{\epsilon}) = (\sigma_{\mathrm{pr}}(\tilde{a}))^{\frac{1}{2}}$$

We add to $\tilde{\epsilon}$ a $\tilde{b}_0 \in \Psi^0(\Sigma; \tilde{V})$ s.t. $\pm \tilde{b}^{\pm} = \tilde{\epsilon} \pm \tilde{b}_0$ are *m*-accreative and

$$\partial_s ilde{b}^{\pm}(s) - (ilde{b}^{\pm})^2(s) + ilde{a}(s) = ilde{r}_{-\infty}^{\pm}(s)$$

PARAMETRIX FOR D

For any $\mp (s - s') \geqslant 0$ we define the operator

$$V^{\pm}(s,s') := \operatorname{Texp}(\int_{s'}^{s} \tilde{b}^{\pm}(\sigma) d\sigma)$$

For $v\in \mathit{C}^\infty_{\mathrm{b}}(\mathit{I};\mathit{C}^\infty_{\mathrm{c}}(\Sigma;\widetilde{V}))$ we set

$$T^{\pm}v(s) := \pm \int_{\mathbb{R}} H(\mp(s-s'))V^{\pm}(s,s')v(s')ds',$$

where $H(t) = 1_{\mathbb{R}^+}(t)$ is the Heaviside function, so that

$$(-\partial_s + \tilde{b}^{\pm}) \circ T^{\pm} = T^{\pm} \circ (-\partial_s + \tilde{b}^{\pm}) = 1.$$

•
$$\tilde{D}^{(-1)} = \left((\tilde{b}^+ - \tilde{b}^-)^{-1} (T^+ - T^-) \right)$$
 is a parametrix for \tilde{D}
 $\tilde{D} \circ \tilde{D}^{(-1)} = 1 + R_{-\infty},$

PARAMETRIX FOR \tilde{D}_{Ω} & MICROLOCAL ESPRESSION FOR \tilde{c}^{\pm}

To define a parametrix we need the following opertors:

-
$$W^{\pm}(s,s') = \operatorname{Texp}(-\int_{s'}^{s} \tilde{b}^{\pm}(\sigma) d\sigma)$$
, for $\pm (s-s') \ge 0$
- $R_{1,-\infty} = \begin{pmatrix} 0 & W^{-}(-T,T) \\ W^{+}(T,-T) & 0 \end{pmatrix}$
- $S\begin{pmatrix} v^{+} \\ v^{-} \end{pmatrix}(s) := W^{+}(s,-T)v^{+} + W^{-}(s,T)v^{-},$
- $\varrho_{\partial\Omega}f := \begin{pmatrix} f(-T) \\ f(T) \end{pmatrix},$

• $\tilde{D}_{\Omega}^{(-1)} = \tilde{D}^{(-1)} - S \circ (1 + R_{1,-\infty})^{-1} \circ \varrho_{\partial\Omega} \circ \tilde{D}^{(-1)}$ is a parametrix for \tilde{D}_{Ω} and the Calderón projectors $\tilde{c}^{\pm} = \mp \tilde{\varrho}^{\pm} \tilde{D}_{\Omega}^{-1} \tilde{\varrho}^* \tilde{\sigma}$ can be written modulo smoothing as

$$ilde{c}^{\pm} = egin{pmatrix} \mp (ilde{b}^+ - ilde{b}^-)^{-1} ilde{b}^{\mp} & \pm (ilde{b}^+ - ilde{b}^-)^{-1} \ \mp ilde{b}^+ (ilde{b}^+ - ilde{b}^-)^{-1} ilde{b}^- & \pm ilde{b}^\pm (ilde{b}^+ - ilde{b}^-)^{-1} \end{pmatrix} (0) + R^{\pm}_{-\infty}$$

PRO AND CONS FOR DIRICHLET BOUNDARY CONDITIONS

PRO:

PROPOSITION [C.Gérard, S.M., M.Wrochna]

(i) $\tilde{c}_j^{\pm}: \mathcal{H}^s(\Sigma; \tilde{V} \otimes \mathbb{C}^2) \to \mathcal{H}^s(\Sigma; \tilde{V} \otimes \mathbb{C}^2)$ are bounded

(ii)
$$\tilde{c}_j^+ + \tilde{c}_j^- = \mathbb{1}$$
,
(iii) $\tilde{c}_j^\pm = (\tilde{c}_j^\pm)^2$
(iv) $\tilde{c}_j^\pm = (\tilde{c}_j^\pm)^\dagger$ (w.r.t. $q_{2,\Sigma}$)
(v) WF' $(U(\cdot, 0)\tilde{c}^\pm) \subset (\mathcal{N}^\pm \cup \mathcal{F}) \times T^*\Sigma$ for $\mathcal{F} = \{k = 0\} \subset T^*M$

CONS:

PROPOSITION [C.Gérard, S.M., M.Wrochna]

(vii) $\tilde{c}_2^{\pm} K_{\Sigma} = K_{\Sigma} \tilde{c}_1^{\pm} \pm K_{-\infty}^{\pm}$ (gauge invariance up to smoothing) (viii) $q_{2,I,\Sigma}(\mathfrak{f}|c_2^{\pm} + \tilde{r}_{2,-\infty}\mathfrak{f}) \ge 0 \quad \forall \mathfrak{f} \in \ker(K_{\Sigma}^{\dagger})$ (positivity up to smoothing)

SOURCE OF THE SMOOTHING OBSTRUCTION: SKETCH OF THE PROOF

(vii) Let
$$\kappa_2$$
 be such that $\tilde{\varrho}^+\kappa_2 = -\tilde{\varrho}^-$ and set for $f_i \in C_c^{\infty}(\Sigma; \tilde{V}_i \otimes \mathbb{C}^2)$:

$$u_2 = -\tilde{D}_{2\Omega}^{-1}\tilde{K}\tilde{\varrho}_1^*\tilde{\sigma}_1f_1, \quad v_2 = -\kappa_2\tilde{D}_{2\Omega}^{-1}\tilde{\varrho}_2^*\tilde{\sigma}_2f_2$$

Since $\tilde{D}_2 \tilde{K} = \tilde{K} \tilde{D}_1$ as differential operator but $\tilde{K} \operatorname{dom}(\tilde{D}_{1,\Omega}) \not\subset \operatorname{dom}(\tilde{D}_{2,\Omega})$

$$\begin{split} \tilde{\varrho}_{2}^{+} u_{2} = & \tilde{\varrho}_{2}^{+} \tilde{D}_{2\Omega}^{-1} \tilde{K} \tilde{\varrho}_{1}^{*} \tilde{\sigma}_{1} f_{1} = \tilde{\varrho}_{2}^{+} \tilde{D}_{2\Omega}^{-1} \tilde{K} \tilde{D}_{1\Omega} \tilde{D}_{1\Omega}^{-1} \tilde{\varrho}_{1}^{*} \tilde{\sigma}_{1} f_{1} \\ = & \tilde{\varrho}_{2}^{+} \tilde{D}_{2\Omega}^{-1} \tilde{D}_{2} \tilde{K} \tilde{D}_{1\Omega}^{-1} \tilde{\varrho}_{1}^{*} \tilde{\sigma}_{1} f_{1} = \tilde{\varrho}_{2}^{+} \tilde{K} \tilde{D}_{1\Omega}^{-1} \tilde{\varrho}_{1}^{*} \tilde{\sigma}_{1} f_{1} + r_{-\infty}^{+} f_{1} \\ = & \mathsf{K}_{\Sigma} \rho_{1}^{+} \tilde{D}_{1\Omega}^{-1} \tilde{\varrho}_{1}^{*} \tilde{\sigma}_{1} f_{1} + r_{-\infty}^{+} f_{1} = \mathsf{K}_{\Sigma} \tilde{c}_{1}^{+} f_{1} + r_{-\infty}^{+} f_{1} \end{split}$$

We have $\tilde{D}_2^* v_2 = 0$ in Ω^+ , $\tilde{D}_2 u_2 = 0$ in Ω^+ and the Green identity yields

$$q_{2,\mathrm{I},\Sigma}(\tilde{\varrho}_{2}^{+}v_{2}|\tilde{\varrho}_{2}^{+}u_{2})_{\tilde{V}_{2}(\Sigma)\otimes\mathbb{C}^{2}}=0 \quad \Rightarrow \quad c_{2}^{-}(\mathsf{K}_{\Sigma}\tilde{c}_{1}^{+}+r_{-\infty}^{+})=0$$

where we used $\tilde{\varrho}^+\kappa_2 = -\tilde{\varrho}^-$ and $\tilde{c}_2^+ = (\tilde{c}_2^+)^{\dagger}$. On account of $\tilde{c}_2^+ + \tilde{c}_2^- = \mathbb{1}$

$$\begin{split} \tilde{c}_2^+\mathsf{K}_{\Sigma} &= (\mathbbm{1} - \tilde{c}_2^-)\mathsf{K}_{\Sigma}(\tilde{c}_1^+ + \tilde{c}_1^-) = \mathsf{K}_{\Sigma}\tilde{c}_1^+ - \tilde{c}_2^-\mathsf{K}_{\Sigma}\tilde{c}_1^+ + (\mathbbm{1} - \tilde{c}_2^-)\mathsf{K}_{\Sigma}\tilde{c}_1^- = \\ &= \mathsf{K}_{\Sigma}\tilde{c}_1^+ + r_{-\infty}^+ + c_2^+\mathsf{K}_{\Sigma}\tilde{c}_1^- = \mathsf{K}_{\Sigma}\tilde{c}_1^+ + r_{-\infty}^+ + r_{-\infty}^- = \mathsf{K}_{\Sigma}\tilde{c}_1^+ + \frac{\kappa_{-\infty}^+}{\kappa_{-\infty}^+} \end{split}$$

SOURCE OF THE SMOOTHING OBSTRUCTION: SKETCH OF THE PROOF

(viii) Let $f \in \operatorname{Ker} K_{\Sigma}^{\dagger}|_{C_{c}^{\infty}}$. With a gauge transformation we can find h and k s.t.

$$ilde{c}_2^+ f = k + \mathsf{K}_{\Sigma} ilde{c}_1^+ h$$
 and $\begin{cases} k_{s\Sigma} = 0, \\ ilde{l}_2 k = k \end{cases}$

Using the almost gauge invariance + other properties of the Calderón op.

 $\begin{aligned} q_{2,\mathbf{I},\Sigma}(f|\tilde{c}_2^+f) &= q_{2,\mathbf{I},\Sigma}(\tilde{c}_2^+f|\tilde{c}_2^+f) = q_{2,\Sigma}(k|k) + q_{\mathbf{1},\Sigma}(\tilde{c}_1^+K_{-\infty}^{\dagger\dagger}f|h) + q_{\mathbf{1},\Sigma}(h|\tilde{c}_1^+K_{-\infty}^{\dagger\dagger}f) \\ \text{Now define } \tilde{k} &:= \tilde{c}_2^+(f - K_{\Sigma}\tilde{c}_1^+h). \text{ Then we can show} \end{aligned}$

$$ilde{k} = ilde{\varrho}_2^+ v \qquad ext{for} \qquad v = ilde{\mathsf{D}}_{2\Omega}^{-1} ilde{\varrho}_2^* ilde{\sigma}_2 (f - K_\Sigma h)$$

Since $\tilde{D}_2\nu=0$ in Ω^+ with $\nu\!\upharpoonright_{\partial\Omega^+\setminus\Sigma}=0$ we obtain by Green's formula that

$$\widetilde{q}_2(\widetilde{k}|\widetilde{k})=2\, ext{Re}\,Q_{\Omega^+}(v,v)\geqslant 0,$$

where the positivity follows from coercivity of Q_{Ω^+} . But since

$$k = \tilde{k} - \tilde{c}_2^- K_{\Sigma} \tilde{c}_1^+ h = \tilde{k} - \tilde{c}_2^- K_{-\infty}^+ h.$$

then we can construct a smoothing operator s.t. $q_{2,l,\Sigma}(\mathfrak{f}|c_2^{\pm}+\tilde{r}_{2,-\infty}\mathfrak{f}) \geqslant 0$

NO-GO THEOREM FOR CONFORMAL BOUNDARY CONDITIONS

DEFINITION: A boundary conditions for D₂ is said to be **gauge invariant** if: $\forall \ \omega \text{ s.t. } D_1 \omega = 0 \text{ near } \partial \Omega \text{ and } \omega|_{\partial \Omega}$ satisfies a boundary condition for D₁ $\Rightarrow u := K \omega$ satisfies boundary conditions for D₂.

THEOREM [M. Capoferri, S.M., G. Schimd] Let (Σ, γ) be a complete Riemannian 3-manifold with $\partial \Sigma = \emptyset$ Define $\Omega := [-T, T] \times \Sigma$ with the metric $g := ds^2 + \gamma$ Suppose that $\operatorname{Ric}(\gamma) = 0$ and there exist non-trivial L²-harmonic 1-forms on Σ . If D₂ is coupled with a first-order, elliptic and gauge invariant b.c. including

$$\delta u = 0$$
 and $u_{\Sigma\Sigma} = \frac{1}{3} \operatorname{tr}_{\gamma}(u_{\Sigma\Sigma})\gamma$ on $\partial \Omega = \{\pm \mathsf{T}\} \times \Sigma$

then $0 \in \sigma(D_2)$.

WHAT ARE GOOD BOUNDARY CONDITIONS FOR GRAVITY?

THANKS for your attention!