On the Cauchy problem for symmetric hyperbolic systems on globally hyperbolic manifolds with timelike boundary

Simone Murro

Department of Mathematics University of Trento

Regensburg working seminars

WorldWideWeb, 5th of June 2020

Outline of the Talk

- Preliminaries
 - Globally hyperbolic manifolds with timelike boundary
 - Symmetric hyperbolic systems
- Boundary conditions
 - Admissible boundary conditions
 - Self-adjoint elliptic boundary conditions
- Energy estimates
- Existence and uniqueness of smooth solutions
- Outlook

Working in progress

N. Drago, N. Große "Classical Dirac operator with selfadjoint elliptic boundary conditions" N. Ginoux "Admissible boundary conditions for symmetric hyperbolic systems"

Preliminaries

Globally hyperbolic manifolds with timelike boundary

- M is connected, time-oriented, oriented smooth manifold with boundary ∂M
- g and $g|_{\partial M}$ are Lorentzian metric $\Longrightarrow M$ is Lorentzian with timelike ∂M

Few definitions:

- Temporal function: $t \in C^{\infty}(M, \mathbb{R})$ strictly increasing on future directed causal curve and ∇t is timelike everywhere and past-pointing
- Cauchy hypersurface Σ : if each inextendible timelike curve $\gamma \cap \Sigma = \{pt\}$
- Globally hyperbolic: M strongly causal and $\forall p, q \in M, J^+(p) \cap J^-(q)$ compact

Bernal and Sánchez (2005) - Aké, Flores and Sánchez (2019):

M is globally hyperbolic (with timelike boundary)

1

Exists a Cauchy temporal function $(t^{-1}(s) := \Sigma_s \text{ is a Cauchy})$ and $\nabla t \in T \partial M$

 $\stackrel{_{\Psi}}{}$ *M* isometric to $\mathbb{R} \times \Sigma$ with metric $-\beta^2 dt^2 + h_t$, where $\beta \in C^{\infty}(M, (0, \infty))$

Example: Minkoski spacetime (\mathbb{R}^4 , η), Schwarzchild spacetime ($\mathbb{R}^2 \times \mathbb{S}^2$, g_S)

NOT Example: anti-de Sitter space $(\mathbb{S}^1 \times \mathbb{R}^3, g_{adS})$, Gödel universe (\mathbb{R}^4, g_G)

Symmetric hyperbolic systems

• •

- E o M be a \mathbb{K} -vector bundle with finite rank N and sesquilinear fiber metric $\prec \cdot \mid \cdot \succ$

Definition: a 1st order S is called symmetric hyperbolic system if

(S)
$$\sigma_S(\xi): E_p \to E_p$$
 is Hermitian with respect to $\prec \cdot | \cdot \succ, \forall \xi \in T_p^* M$ and $\forall p \in M$.

(H) $\prec \sigma_{S}(\tau) \cdot | \cdot \succ$ is positive definite on E_{p} , for any future-directed timelike $\tau \in T_{p}^{*}M$

Furthermore S is of constant characteristic if dim ker $\sigma_{S}(n^{\flat})$ is constant, where $n \perp \partial M$.

Example:
$$E = \mathbb{C}^{N} \times \mathbb{R}^{n} \to (\mathbb{R}^{n}, \eta) \text{ with } \prec | \succ = \langle | \rangle_{\mathbb{C}^{N}}$$

 $S := A_{0}(p)\partial_{t} + \sum_{j=i}^{n} A_{j}(p)\partial_{x_{j}} + B(p)$
(S) $A_{0} = A_{0}^{\dagger}, A_{j} = A_{j}^{\dagger}$ (H) $\sigma_{S}(dt + \sum_{j} \alpha_{j}dx_{j}) = A_{0} + \sum_{j=1}^{n} \alpha_{j}A_{j} > 0$.

Lemma: If $\prec \cdot | \cdot \succ$ is indefinite and S is a symmetric hyperbolic system, then:

(I) $\langle \cdot | \cdot \rangle := \prec \sigma_{S}(dt) \cdot | \cdot \succ$ is positive Hermitian metric; (II) $\mathfrak{S} = -\sigma_{S}(dt)^{-1}S$. is symmetric hyperbolic system (III) Cauchy problem for \mathfrak{S} is equivalent to the Cauchy problem for S.

Example I: The classical Dirac operator

- M = (M, g) is a globally hyperbolic spin manifold with timelike boundary;
- SM is a *spinor bundle*: \mathbb{C} -vector bundle with *N*-dim. fibers with indefinite sesquilinear metric

$$\prec \cdot | \cdot \succ : \mathbb{S}_p M \times \mathbb{S}_p M \to \mathbb{C}$$

and a Clifford multiplication, i.e. fiber-preserving map $\gamma: TM \to End(\mathbb{S}M)$

Dirac operator: $D := \gamma \circ \nabla^{\mathbb{S}} \colon \Gamma(\mathbb{S}M) \to \Gamma(\mathbb{S}M)$ which in local coordinates reads

$$\mathsf{D} = \sum_{\mu=\mathbf{0}}^{n} arepsilon_{\mu} \gamma(e_{\mu})
abla_{e_{\mu}}^{\mathbb{S}}$$

- $(e_{\mu})_{\mu=\mathbf{0},\ldots,n}$ is a local orthonormal Lorentzian frame of *TM* and $\varepsilon_{\mu}:=g(e_{\mu},e_{\mu})$

- $\gamma(u)\gamma(v) + \gamma(v)\gamma(u) = -2g(u, v)$ for every $u, v \in T_pM$ and $p \in M$.

Remarks:

- (i) Topological obstruction to existence of a spinor bundle;
- (ii) Existence of spinor bundles on parallelizable manifolds;
- (iii) D is nowhere characteristic.

Example II: The geometric wave operator

- -M is a globally hyperbolic with timelike boundary and $g = -\beta^2 dt^2 + h_t$;
- V be an Hermitian vector bundle of finite rank;
- P is a normally hyperbolic operator, i.e. $P = \nabla^* \nabla + c$ and principal symbol σ_P defined by

$$\sigma_P(\xi) = -g(\xi,\xi) \cdot \mathrm{Id}_V$$
, for every $\xi \in T^*M$.

A norm. hyp. op. P can be reduced to $S : \Gamma(E) \to \Gamma(E)$ defined by

$$\mathsf{S} := (\mathsf{A}_{\mathbf{0}} \nabla_{\partial_t} + \mathsf{A}_{\Sigma} \nabla^{\Sigma} + \mathsf{C})$$

$$\Psi := \begin{pmatrix} \nabla_{\partial_t} u \\ \nabla^{\Sigma} u \\ u \end{pmatrix} \quad A_{\mathbf{0}} := \begin{pmatrix} \frac{1}{\beta^2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad A_{\Sigma} = \begin{pmatrix} 0 & -\operatorname{tr}_{h_t} & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad C = \begin{pmatrix} \text{suitable} \end{pmatrix}.$$

Remarks:

- (i) The Cauchy problem for P can be made equivalent to the Cauchy problem for S;
- (ii) S is of constant characteristic,

$$\sigma_{\mathcal{S}}(\mathtt{n}^{\flat})=\left(egin{array}{ccc} 0&-\mathtt{n}^{\flat}\lrcorner&0\ -\mathtt{n}^{\flat}\otimes&0&0\ 0&0&0\end{array}
ight),$$

Admissible boundary conditions

Definition: A boundary space B_{adm} for S is called admissible if

- The quadratic form $\Psi \mapsto \prec \sigma_{S}(n^{\flat})\Psi | \Psi \succ$ is positive semi-definite on B_{adm} ;
- rank $B_{adm} = \#$ pointwise non-negative eigenvalues of $\sigma_S(n^{\flat})$ counting multiplicity.

The adjoint boundary space is defined by $\mathsf{B}_{adm}^\dagger := \left(\sigma_{\mathbf{S}}(n^\flat)(\mathsf{B}_{adm})\right)^\perp$, i.e.

 $\{\Phi \in \Gamma(E|_{\partial M}) \,|\, \text{for any } \Psi \in \mathsf{B}_{adm} \text{ it holds } \prec \sigma_{\mathbf{S}}(\texttt{n}^{\flat})\Psi \,|\, \Phi \succ = 0\}\,.$

Examples for classical Dirac operators:

Lorentzian MIT boundary space is the range of $\pi_{\text{Lor}} := \frac{1}{2} (\text{Id} \pm i\gamma(n))$

 $\prec \sigma_{\mathsf{D}}(\mathsf{n}^{\flat})\pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ = \prec \gamma(\mathsf{n})\pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ = \imath \prec \pi_{\mathrm{MIT}}\psi \mid \pi_{\mathrm{MIT}}\psi \succ$

Riemannian MIT boundary space is the range of $\pi_{\text{Riem}} := \frac{1}{2} \left(\text{Id} - \frac{1}{\beta} \gamma(\mathbf{n}) \gamma(\partial_t) \right)$

$$\prec \sigma_{\mathbf{D}}(\mathbf{n}^{\flat})\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ = \prec \gamma(\mathbf{n})\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ = \frac{1}{\beta} \prec \gamma(\partial_{t})\pi_{\operatorname{Riem}}\psi \mid \pi_{\operatorname{Riem}}\psi \succ \geq 0$$

Admissible boundary conditions

Definition: A boundary space B_{adm} for S is called admissible if

- The quadratic form $\Psi \mapsto \prec \sigma_{S}(n^{\flat})\Psi | \Psi \succ$ is positive semi-definite on B;
- rank $B_{adm} = \#$ pointwise non-negative eigenvalues of $\sigma_{S}(n^{\flat})$ counting multiplicity.

The adjoint boundary space is defined by $B_{adm}^{\dagger} := \left(\sigma s(n^{\flat})(B_{adm})\right)^{\perp}$, i.e.

 $\{\Phi \in \Gamma(E|_{\partial M}) \,|\, \text{for any } \Psi \in \mathsf{B}_{adm} \text{ it holds } \prec \sigma_{\mathbf{S}}(\mathsf{n}^{\flat})\Psi \,|\, \Phi \succ = 0\}\,.$

Examples for geometric wave operator:

Neumann like-boundary condition:
$$\nabla_{n}^{\Sigma} u = 0 \implies \mathsf{B}_{adm}^{N.} = \ker \begin{pmatrix} 0 & n \downarrow & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Transparent boundary condition: $\nabla_{n}^{\Sigma} u = -b\nabla_{\partial_{\tau}} u \implies \mathsf{B}^{T.} = \ker \begin{pmatrix} b & n \lrcorner & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

NOT example for geometric wave operator:

Robin boundary condition: $\nabla_n^{\Sigma} u = bu$ $(b \neq 0) \Rightarrow B_{adm}^{R} = \ker \begin{pmatrix} 0 & n \rfloor & -b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(the quadratic form is not positive semi-definite)

- \

Self-adjoint elliptic boundary conditions

- *M* is a globally hyperbolic spin with timelike boundary and $\partial \Sigma$ is compact;
- Dirac operator on spinor bundle $\mathbb{S}M$ reads as $\mathsf{D}=-\gamma(dt)
 abla_{\partial_t}+\mathsf{D}_{\Sigma}$
- Dirac Hamiltonian $H := \imath \gamma(dt)^{-1} D_{\Sigma}$ ($D\Psi = 0 \iff \imath \nabla_{\partial_t} \Psi = H\Psi$)
- adapted operator $A : \Gamma(\mathbb{S}M|_{\partial M}) \to \Gamma(\mathbb{S}M|_{\partial M})$ formally self-adjoint s. t. $\forall p \in \partial \Sigma_t \ \forall \xi \in T_p^* \partial \Sigma$

$$\sigma_{\mathcal{A}}(\xi) := \sigma_{\mathbf{H}(t)}(\nu_t^{\flat})^{-1} \circ \sigma_{\mathbf{H}(t)}(\xi) \qquad \sigma_{\mathbf{H}(t)}(\nu_t^{\flat}) \circ \mathcal{A} = -\mathcal{A} \circ \sigma_{\mathbf{H}(t)}(\nu_t^{\flat}),$$

- Sobolev-like spaces $\check{\mathcal{H}}(A(t) := \mathcal{H}_{(-\infty, \hat{\sigma})}^{\frac{1}{2}}(A(t)) \oplus \mathcal{H}_{[\hat{\sigma}, \infty)}^{-\frac{1}{2}}(A(t))$

$$\mathcal{H}^{s}_{l}(A(t)) := \left\{ \sum_{j} \alpha_{j} \varphi_{j}(t) \in L^{2}(\mathbb{S}M|_{\partial \Sigma_{t}}) \mid \sum_{j \mid \lambda_{j} \in I} |\alpha_{j}|^{2} (1 + \lambda_{j}^{2}(t))^{s} < +\infty \right\}, \quad s \in \mathbb{R},$$

Definition: A boundary space B_{ell} for D is called self-adjoint elliptic if

- (B) $B_{ell}(t) \subset \check{\mathcal{H}}(A(t))$ is closed;
- (E) $\Psi \in \mathcal{H}^k_{loc}(\mathbb{S}M|_{\Sigma_t}) \iff \mathsf{H}_{ell}(t)\Psi \in \mathcal{H}^{k+1}_{loc}(\mathbb{S}M|_{\Sigma_t}),$

$$(\mathsf{SA}) \;\; \mathsf{B}_{\textit{ell}}(t) = \mathsf{B}_{\textit{ell}}^{\dagger}(t) := \{ \Phi \in \check{\mathcal{H}}(\mathsf{A}(t) \,|\, \mathsf{for any} \; \Psi \in \mathsf{B}_{\textit{ell}} \; \mathsf{it holds} \;\; \prec \sigma_{\mathsf{H}(t)}(\mathsf{n}^{\flat}) \Psi \,|\, \Phi \succ = 0 \}$$

Examples:

APS boundary conditions $B_{APS} := \mathcal{H}^{\frac{1}{2}}_{(-\infty,\mathbf{0})}(A(t))$ (self-adjoint $\iff \ker A(t) = \{0\}$).

TAKE HOME MESSAGES

Theorem [Ginoux-M.]

- $M = \mathbb{R} imes \Sigma$ globally hyperbolic with timelike boundary

There exists a unique strong solution to the Cauchy problem for a symmetric hyperbolic system

$$\begin{cases} \mathsf{S}\Psi = \mathfrak{f} \\ \Psi|_{\mathsf{E}|_{\boldsymbol{\Sigma}_{\boldsymbol{0}}}} = \mathfrak{h} \\ \Psi \in \mathsf{B}_{\mathit{adm}} \end{cases}$$

If $(\mathfrak{f}, \mathfrak{h}) \in \Gamma(E) \times \Gamma(E|_{\Sigma_0})$ satisfy compatibility conditions

(i) S is nowhere characteristic \implies the solution is smooth;

(ii) S is of constant characteristic \implies the solution is smooth in tangential direction.

Theorem [Drago-Große-M.]

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary with $\partial \Sigma$ compact

There exists a unique smooth solution Ψ to the Cauchy problem for the Dirac operator

$$\begin{cases} \mathsf{D}\Psi = \mathfrak{f} \\ \Psi|_{\mathbb{S}M|_{\Sigma_{\mathbf{0}}}} = \mathfrak{h} \\ \Psi \in \mathsf{B}_{\textit{ell}} \end{cases}$$

where $(\mathfrak{f},\mathfrak{h}) \in \check{\Gamma}_{c}(\mathbb{S}M) \times \check{\Gamma}_{c}(\mathbb{S}M|_{\Sigma_{\mathbf{0}}}) \subset \Gamma(\mathbb{S}M) \times \Gamma(\mathbb{S}M|_{\Sigma_{\mathbf{0}}}).$

Energy estimates

Theorem (Energy estimates)

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary (and $\partial \Sigma$ compact for elliptic B.C.)
- S is symmetric hyperbolic with Badm while D is Dirac operator with Bell

Then for each $t_0 \in t(M)$ there exists constants C > 0 such that for all $t_1 \ge t_0$ it holds

$$\int_{\Sigma_{t_{1}}} |\Psi|^{2} d\mu_{t_{1}} \leq C e^{C(t_{1}-t_{0})} \int_{t_{0}}^{t_{1}} \int_{\Sigma_{s}} |D\Psi|^{2} d\mu_{s} ds + e^{C(t_{1}-t_{0})} \int_{\Sigma_{t_{0}}} |\Psi|^{2} d\mu_{t_{0}} \qquad \forall \Psi \in B_{ell}$$

$$\int_{\Sigma_{t_{1}}} |\Psi|^{2} d\mu_{t_{1}} \leq C e^{C(t_{1}-t_{0})} \int_{t_{0}}^{t_{1}} \int_{\Sigma_{s}}^{p} |S\Psi|^{2} d\mu_{s} ds + e^{C(t_{1}-t_{0})} \int_{\Sigma_{t_{0}}} |\Psi|^{2} d\mu_{t_{0}} \qquad \forall \Psi \in B_{adm}$$

where $t\colon M\to\mathbb{R}$ be a Cauchy temporal function and $\Sigma^p_s:=J^-(p)\cap\Sigma_s$

Corollary (uniqueness)

If there exists a solution to the Cauchy problem with admissible/elliptic B.C., then it is unique

$$\textit{Proof: If } S(\Psi - \Phi) = 0, \ \Psi, \Phi \in \mathsf{B}_{\textit{adm/ell}} \textit{ and } \Psi|_{\Sigma_{\boldsymbol{0}}} = \Phi|_{\Sigma_{\boldsymbol{0}}} \xrightarrow{\textit{Energy estimates}} \Psi - \Phi = 0$$

Corollary (finite speed of propagation with B_{adm})

$$\mathsf{supp} \ \Psi \subset \mathcal{V} := J(\mathsf{supp} \ f) \cup J(\mathsf{supp} \ h)$$

Proof: If $p \notin \mathcal{V}$ then $\mathfrak{f}|_{M \setminus \mathcal{V}} = 0$ and $\mathfrak{h}|_{M \setminus \mathcal{V}} = 0$ $\xrightarrow{\text{Energy estimates}} \Psi|_{M \setminus \mathcal{V}} = 0$

Energy estimates (admissible boundary conditions)

Sketch of the proof:

-n-differential form:

$$\omega := \sum_{j=\mathbf{0}}^n \Re e \left(\prec \sigma_{\mathbf{S}}(b_j^{\flat}) \Psi \,|\, \Psi \succ
ight) b_j \lrcorner \mathsf{vol}_M$$

- Stokes' theorem for manifold with Lipschitz boundary yields

$$\int_{K} d\omega = \int_{\partial K} \omega = \int_{\Sigma_{\mathbf{1}_{\mathbf{1}}}^{p}} \omega - \int_{\Sigma_{\mathbf{1}_{\mathbf{0}}}^{p}} \omega + \int_{\mathsf{red}} \omega + \int_{\mathsf{blue}} \omega$$

- Hyperbolicity of S $\Longrightarrow \int_{\text{blue}} \omega \ge 0$ while $\Psi \in \mathsf{B}_{adm} \Longrightarrow \int_{\text{red}} \omega \ge 0$

$$\int_{\Sigma_{\mathbf{t_1}}^p} |\Psi|^2 d\mu_{\mathbf{1}} - \int_{\Sigma_{\mathbf{t_0}}^p} |\Psi|^2 d\mu_{\mathbf{0}} \leq \int_K d\omega \leq C \int_{t_0}^{t_1} \int_{\Sigma_s^p} (|\Psi|^2 + |\mathsf{S}\Psi|^2) d\mu_s ds$$

- By setting
$$h(s) := \int_{\Sigma_s^p} |\Psi|^2 d\mu_s$$
, $\alpha(t_1) := C \int_{t_0}^{t_1} \int_{\Sigma_s^p} (|\Psi|^2 + |S\Psi|^2) d\mu_s ds + \int_{\Sigma_0^p} |\Psi|^2 d\mu_0$

and using Grönwall, we obtain: $h(t_1) \leq \alpha(t_1) + C \int_{t_0}^{t_1} h(s) ds \leq \alpha(t_1) e^{C(t_1 - t_0)}$

Weak and Strong Solutions in a time strip $M_T := t^{-1}(t_1, t_0)$

Definition: We call
$$\Psi \in \mathscr{H} := \overline{(\Gamma_c(E|_{M_T}), (. | .)_{M_T})}^{(. | .)_{M_T}}$$

(W) Weak Solution if it holds
$$(\Phi | f)_{M_T} = (S^{\dagger} \Phi | \Psi)_{M_T}$$

for any $\Phi\in \Gamma_c(E|_{M_{\mathcal{T}}})$ such that $\Phi\in \mathsf{B}^\dagger_{\mathit{adm/ell}}$ and $\Phi|_{\Sigma_{\mathbf{f}_1}}=0=\Phi|_{\Sigma_{\mathbf{f}_0}}$

(S) Strong Solution if $\exists \{\Psi_k\}_k$, $\Psi_k \in \Gamma(E|_{M_T})$ s.t. $\Psi_k \in \mathsf{B}_{adm/ell}$ on ∂M and

$$\|\Psi_k - \Psi\|_{L^2(M_T)} \xrightarrow{k \to \infty} 0 \quad \text{and} \quad \|S\Psi_k - \mathfrak{f}\|_{L^2(M_T)} \xrightarrow{k \to \infty} 0$$

Theorem (weak=strong with admissible boundary conditions B_{adm})

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary
- S is symmetric hyperbolic with admissible boundary conditions B_{adm}

Any weak solution is a strong solution. Moreover, if $(\mathfrak{f}, \mathfrak{h})$ satisfy compatibility conditions

(i) S is nowhere characteristic \implies the solution is **smooth**;

(ii) S is of constant characteristic \implies the solution is smooth in tangential direction;

Comments on the Proof

- Admissible boundary conditions are local, so we can localise
- In Fermi coordinates, we can use the local theory [Phillips-Lax,Rauch,Massey-Rauch].

Existence of a Weak Solution

Theorem (existence weak solutions)

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary (and $\partial \Sigma$ compact for elliptic B.C.)
- S is symmetric hyperbolic with B_{adm} or is Dirac operator with B_{ell}

There exists a weak solution to the Cauchy problem.

Sketch of the proof:

- Energy Estimates: $\|\Phi\|_{L^2(M_T)} \leq c \|S^{\dagger}\Phi\|_{L^2(M_T)}$
- The kernel of the operator S^\dagger acting on dom S^\dagger is trivial

$$\operatorname{\mathsf{dom}} \mathsf{S}^{\dagger} := \{ \Phi \in \mathsf{\Gamma}_c(\mathsf{\textit{E}}_{\mathsf{M}_{\mathcal{T}}}) \mid \Phi|_{\Sigma_{t_{\mathbf{1}}}} = 0, \Phi|_{\Sigma_{t_{\mathbf{0}}}} = 0, \Phi \in \mathsf{B}_{\mathit{adm/ell}} \}$$

-
$$\ell \colon S^{\dagger}(\text{dom}\,S^{\dagger}) \to \mathbb{C}$$
 given by $\ell(\Theta) = (\Phi \mid \mathfrak{f})_{M_{\mathcal{T}}}$ where Φ satisfies $S^{\dagger}\Phi = \Theta$

- Energy Estimates $\Rightarrow \ell$ is bounded:

$$\begin{split} \ell(\Theta) &= (\Phi \mid \mathfrak{f})_{M_{\mathcal{T}}} \leq \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|\Phi\|_{L^{2}(M_{\mathcal{T}})} & \text{(Cauchy-Schwarz inequality)} \\ &\leq \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|S^{\dagger}\Phi\|_{L^{2}(M_{\mathcal{T}})} = \lambda^{-1} \|\mathfrak{f}\|_{L^{2}(M_{\mathcal{T}})} \|\Theta\|_{L^{2}(M_{\mathcal{T}})} \end{split}$$

-Hence $(\Phi \mid \mathfrak{f})_{M_{\mathcal{T}}} = \ell(\Theta) \stackrel{Riesz}{\overline{Thm.}} (\Theta \mid \Psi)_{M_{\mathcal{T}}} = (\mathsf{S}^{\dagger} \Phi \mid \Psi)_{M_{\mathcal{T}}} \text{ for all } \Phi \in \mathsf{domS}^{\dagger}$

Existence of smooth solutions with elliptic boundary conditions

Theorem (existence smooth solutions with elliptic boundary conditions B_{ell})

- $M = \mathbb{R} \times \Sigma$ globally hyperbolic with timelike boundary and $\partial \Sigma$ compact
- D is a Dirac operator with self-adjoint elliptic boundary condition B_{ell}

There exists a unique smooth solutions to the Cauchy problem.

Sketch of the proof

- By finite speed of propagation in the bulk, Σ can be chosen compact
- Sobolev-like spaces $\mathcal{H}^{\infty}_{\mathrm{bc}}(E|_{\Sigma_{t}}) := \bigcap_{k} \left(\mathcal{H}^{k}_{\mathrm{bc}}(E|_{\Sigma_{t}}) := \mathsf{dom}\langle \mathsf{H}_{\mathit{ell}}(t)^{2} + 1 \rangle^{\frac{k}{2}} \right) \subset \Gamma(E)$
- Mollifier $J_{\varepsilon}(t) := \exp[-\varepsilon \langle \mathsf{H}_{ell}(t)^2 + 1 \rangle] \colon \mathcal{H}^{\infty}_{\mathrm{bc}}(\mathsf{E}|_{\Sigma_t}) \to \mathcal{H}^{\infty}_{\mathrm{bc}}(\mathsf{E}|_{\Sigma_t})$
- Existence of unique solution of regularized equation $i \nabla_{\partial_t} \Psi^{(\varepsilon)} = J_{\varepsilon}(t) \mathsf{H}_{ell}(t) J_{\varepsilon}(t) \Psi^{(\varepsilon)} + f$,
- Estimates (\Rightarrow equicontinuity) + Ascoli-Arzela (\Rightarrow relatively compactness) + diag. subseq. arg. $\{\Psi^{(\varepsilon)}\}_{\varepsilon>0} \supset \{\Psi^{(\varepsilon_j)}\}_{j\in\mathbb{N}} \xrightarrow{j\to+\infty} \Psi \in C^1(\mathbb{R}, \mathcal{H}^{\infty}_{\mathrm{bc}}(\mathcal{E}|_{\Sigma_t})) \text{ and satisfies } \imath \nabla_{\partial_t} \Psi = \mathsf{H}_{ell} \Psi + f$
- By showing that also $\nabla_{\partial_t}\Psi\in \mathit{C^0}(\mathbb{R},\mathcal{H}^\infty_{\mathrm{bc}}(\mathsf{E}|_{\Sigma_t}))$ and iterating, we can conclude.

Outlook

WHAT WE HAVE SEEN AND WHAT COMES NEXT?

well-posedness of the Cauchy problem for

✓ Dirac operator with self-adjoint elliptic b. c. (Nicolò Drago & Nadine Große)

e.g. classical Dirac operator with APS boundary condition

- ✓ Symmetric hyperbolic systems with admissible boundary condition (Nicolas Ginoux)
 - e.g. Wave equation with Neumann and transparent boundary condition
 - e.g. Classical Dirac operator with MIT boundary conditions

What comes next?

- ? De Rham-d'Alembert operator (with Nicolas Ginoux)
- ? Dirac type-operator with general elliptic boundary condition

THANKS for your attention!